2.1 中点和垂直平分线 / Midpoints and Perpendicular Bisectors

教材内容 / Textbook Content

1. 中点公式 / The Midpoint Formula

在坐标几何中,线段的中点是连接两个端点的线段的中点。我们可以通过平均两个端点的x坐标和y坐标来找到中点的坐标。

In coordinate geometry, the midpoint of a line segment is the point that divides the segment into two equal parts. We can find the midpoint coordinates by averaging the x-coordinates and y-coordinates of the endpoints.

定义 / Definition

中点 / Midpoint:具有端点 \(\left( x_1, y_1 \right)\) 和 \(\left( x_2, y_2 \right)\) 的线段的中点是 \(\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)\)。

The midpoint of a line segment with endpoints \(\left( x_1, y_1 \right)\) and \(\left( x_2, y_2 \right)\) is \(\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)\)。

核心要点 / Key Points

中点公式是坐标几何中的基本工具,它告诉我们:要找到两点之间的中点,只需将相应的坐标相加然后除以2。

The midpoint formula is a fundamental tool in coordinate geometry. It tells us that to find the midpoint between two points, we simply add the corresponding coordinates and divide by 2.

中点公式 / Midpoint Formula:

\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \]

其中 \(M\) 是中点,\((x_1, y_1)\) 和 \((x_2, y_2)\) 是线段的两个端点。

示例 1 / Example 1

问题 / Problem:线段 \({AB}\) 是一个圆的直径,其中 \(A\) 和 \(B\) 分别是 \((-3, 8)\) 和 \((5, 4)\)。求圆心的坐标。

The line segment \({AB}\) is a diameter of a circle, where \(A\) and \(B\) are \((-3, 8)\) and \((5, 4)\) respectively. Find the coordinates of the centre of the circle.

解答 / Solution:

记住圆心是直径的中点。/ Remember the centre of a circle is the midpoint of a diameter.

圆心是 \(\left( \frac{-3 + 5}{2}, \frac{8 + 4}{2} \right) = \left( \frac{2}{2}, \frac{12}{2} \right) = (1, 6)\)

The centre of the circle is \(\left( \frac{-3 + 5}{2}, \frac{8 + 4}{2} \right) = \left( \frac{2}{2}, \frac{12}{2} \right) = (1, 6)\)

示例 2 / Example 2

问题 / Problem:线段 \({PQ}\) 是一个圆心为 \((2, -2)\) 的圆的直径。已知 \(P\) 是 \((8, -5)\),求 \(Q\) 的坐标。

The line segment \({PQ}\) is a diameter of the circle centre \((2, -2)\). Given that \(P\) is \((8, -5)\), find the coordinates of \(Q\).

解答 / Solution:

设 \(Q\) 的坐标为 \((a, b)\)。因为 \((2, -2)\) 是 \((a, b)\) 和 \((8, -5)\) 的中点:

Let \(Q\) have coordinates \((a, b)\). Since \((2, -2)\) is the midpoint of \((a, b)\) and \((8, -5)\):

\(\left( \frac{8 + a}{2}, \frac{-5 + b}{2} \right) = (2, -2)\)

分别比较x坐标和y坐标:/ Compare the x- and y-coordinates separately:

\(\frac{8 + a}{2} = 2 \Rightarrow 8 + a = 4 \Rightarrow a = -4\)

\(\frac{-5 + b}{2} = -2 \Rightarrow -5 + b = -4 \Rightarrow b = 1\)

因此,\(Q\) 是 \((-4, 1)\)。/ So, \(Q\) is \((-4, 1)\).

关键点 / Key Points

  • 中点坐标的计算方法是将两端点的对应坐标相加后除以2
  • 在圆的问题中,圆心就是直径的中点
  • 已知中点和其中一个端点,可以求出另一个端点
  • 中点公式在几何证明和实际问题中有广泛应用

2. 垂直平分线 / Perpendicular Bisectors

线段的垂直平分线是垂直于该线段并通过其中点的直线。垂直平分线在几何学中具有重要性质和应用。

The perpendicular bisector of a line segment is the straight line that is perpendicular to the segment and passes through the midpoint of the segment. Perpendicular bisectors have important properties and applications in geometry.

定义 / Definition

垂直平分线 / Perpendicular Bisector:线段 \({AB}\) 的垂直平分线是垂直于 \({AB}\) 并通过 \({AB}\) 中点的直线。

The perpendicular bisector of a line segment \({AB}\) is the straight line that is perpendicular to \({AB}\) and passes through the midpoint of \({AB}\).

核心性质 / Key Properties

如果线段 \({AB}\) 的斜率是 \(m\),那么它的垂直平分线 \(l\) 的斜率将是 \(-\frac{1}{m}\)。

If the gradient of \({AB}\) is \(m\) then the gradient of its perpendicular bisector, \(l\), will be \(-\frac{1}{m}\).

垂直条件 / Perpendicular Condition:

如果两条直线互相垂直,它们的斜率满足:\(m_1 \cdot m_2 = -1\)

If two lines are perpendicular, their gradients satisfy: \(m_1 \cdot m_2 = -1\)

示例 3 / Example 3

问题 / Problem:线段 \({AB}\) 是一个圆心为 \(C\) 的圆的直径,其中 \(A\) 和 \(B\) 分别是 \((-1, 4)\) 和 \((5, 2)\)。直线 \(l\) 通过 \(C\) 并垂直于 \({AB}\)。求 \(l\) 的方程。

The line segment \({AB}\) is a diameter of the circle centre \(C\), where \(A\) and \(B\) are \((-1, 4)\) and \((5, 2)\) respectively. The line \(l\) passes through \(C\) and is perpendicular to \({AB}\). Find the equation of \(l\).

解答 / Solution:

步骤1:求圆心(中点)/ Step 1: Find the centre (midpoint)

圆心 \(C = \left( \frac{-1 + 5}{2}, \frac{4 + 2}{2} \right) = (2, 3)\)

The centre of the circle is \(C = \left( \frac{-1 + 5}{2}, \frac{4 + 2}{2} \right) = (2, 3)\)

步骤2:求线段 \({AB}\) 的斜率 / Step 2: Find the gradient of \({AB}\)

\(m_{AB} = \frac{2 - 4}{5 - (-1)} = \frac{-2}{6} = -\frac{1}{3}\)

The gradient of the line segment \({AB}\) is \(m_{AB} = \frac{2 - 4}{5 - (-1)} = \frac{-2}{6} = -\frac{1}{3}\)

步骤3:求垂直平分线的斜率 / Step 3: Find the gradient of the perpendicular bisector

因为两条直线垂直,所以:\(m_l = 3\)(因为 \(-\frac{1}{3} \times 3 = -1\))

Since the lines are perpendicular: \(m_l = 3\) (because \(-\frac{1}{3} \times 3 = -1\))

步骤4:求直线方程 / Step 4: Find the equation of the line

直线通过点 \((2, 3)\) 且斜率为 \(3\),使用点斜式:

The line passes through \((2, 3)\) with gradient \(3\), using point-slope form:

\(y - 3 = 3(x - 2)\)

\(y - 3 = 3x - 6\)

\(y = 3x - 3\)

注意 / Note

在求解垂直平分线方程时,必须确保:

1. 直线通过线段的中点

2. 直线的斜率与原线段的斜率满足垂直条件 \((m_1 \cdot m_2 = -1)\)

When finding the equation of a perpendicular bisector, ensure that:

1. The line passes through the midpoint of the segment

2. The gradient satisfies the perpendicular condition \((m_1 \cdot m_2 = -1)\)

解题步骤 / Solution Steps

  • 第一步:计算线段的中点坐标
  • 第二步:计算原线段的斜率
  • 第三步:利用垂直条件求垂直线的斜率
  • 第四步:使用中点和斜率写出直线方程
思考 / Think

为什么垂直平分线上的任意一点到线段两端点的距离相等?这个性质在实际问题中有哪些应用?

Why is any point on the perpendicular bisector equidistant from both endpoints of the segment? What applications does this property have in practical problems?

3. 综合应用 / Comprehensive Applications

中点和垂直平分线的概念在解决复杂几何问题时经常需要结合使用。让我们通过一个综合例子来展示这些概念的应用。

The concepts of midpoints and perpendicular bisectors often need to be used together when solving complex geometric problems. Let's demonstrate the application of these concepts through a comprehensive example.

综合示例 / Comprehensive Example

问题 / Problem:三角形 \({ABC}\) 的顶点分别为 \(A(1, 2)\)、\(B(7, 4)\) 和 \(C(3, 8)\)。求:

a) 边 \({AB}\) 的中点坐标

b) 边 \({AB}\) 的垂直平分线方程

c) 验证垂直平分线是否通过三角形的外心

Triangle \({ABC}\) has vertices at \(A(1, 2)\), \(B(7, 4)\), and \(C(3, 8)\). Find:

a) The midpoint of side \({AB}\)

b) The equation of the perpendicular bisector of \({AB}\)

c) Verify if the perpendicular bisector passes through the circumcenter

解答 / Solution:

a) 中点计算 / Midpoint calculation:

中点 \(M = \left( \frac{1 + 7}{2}, \frac{2 + 4}{2} \right) = (4, 3)\)

Midpoint \(M = \left( \frac{1 + 7}{2}, \frac{2 + 4}{2} \right) = (4, 3)\)

b) 垂直平分线方程 / Perpendicular bisector equation:

边 \({AB}\) 的斜率:\(m_{AB} = \frac{4 - 2}{7 - 1} = \frac{2}{6} = \frac{1}{3}\)

Gradient of \({AB}\): \(m_{AB} = \frac{4 - 2}{7 - 1} = \frac{2}{6} = \frac{1}{3}\)

垂直平分线的斜率:\(m_{\perp} = -3\)(因为 \(\frac{1}{3} \times (-3) = -1\))

Gradient of perpendicular bisector: \(m_{\perp} = -3\) (since \(\frac{1}{3} \times (-3) = -1\))

通过点 \((4, 3)\) 且斜率为 \(-3\) 的直线方程:

Equation of line through \((4, 3)\) with gradient \(-3\):

\(y - 3 = -3(x - 4)\)

\(y - 3 = -3x + 12\)

\(y = -3x + 15\)

重要应用 / Important Applications

垂直平分线在三角形几何中具有特殊意义:三角形三条边的垂直平分线交于一点,这个点称为三角形的外心(circumcenter),也就是三角形外接圆的圆心。

Perpendicular bisectors have special significance in triangle geometry: the three perpendicular bisectors of a triangle's sides meet at a single point called the circumcenter, which is the center of the triangle's circumscribed circle.

常见错误 / Common Mistakes

在计算垂直平分线时,学生常犯的错误包括:

1. 忘记使用中点:垂直平分线必须通过线段的中点

2. 斜率计算错误:垂直斜率应该是原斜率的负倒数

3. 符号错误:在坐标运算中要特别注意正负号

学习检查点 / Learning Checkpoint

通过本节的学习,你应该能够: